Extensions 1→N→G→Q→1 with N=S3×C32 and Q=S3

Direct product G=N×Q with N=S3×C32 and Q=S3
dρLabelID
S32×C3236S3^2xC3^2324,165

Semidirect products G=N:Q with N=S3×C32 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3×C32)⋊1S3 = S3×C32⋊C6φ: S3/C1S3 ⊆ Out S3×C321812+(S3xC3^2):1S3324,116
(S3×C32)⋊2S3 = S3×He3⋊C2φ: S3/C1S3 ⊆ Out S3×C32186(S3xC3^2):2S3324,122
(S3×C32)⋊3S3 = C3×S3×C3⋊S3φ: S3/C3C2 ⊆ Out S3×C3236(S3xC3^2):3S3324,166
(S3×C32)⋊4S3 = S3×C33⋊C2φ: S3/C3C2 ⊆ Out S3×C3254(S3xC3^2):4S3324,168

Non-split extensions G=N.Q with N=S3×C32 and Q=S3
extensionφ:Q→Out NdρLabelID
(S3×C32).S3 = S3×C9⋊C6φ: S3/C1S3 ⊆ Out S3×C321812+(S3xC3^2).S3324,118
(S3×C32).2S3 = C3×S3×D9φ: S3/C3C2 ⊆ Out S3×C32364(S3xC3^2).2S3324,114
(S3×C32).3S3 = S3×C9⋊S3φ: S3/C3C2 ⊆ Out S3×C3254(S3xC3^2).3S3324,120

׿
×
𝔽